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Exponential autoregression (EAR) is a kind of useful non-linear time series model that
has properties similar to those of non-linear random vibrations. This model is of
autoregressive form with amplitude-dependent coefficients, so parameter estimation is a
non-linear optimization problem. To achieve this difficult but important task, this paper
introduces a new procedure of the genetic algorithm hybridized with the least squares
method to estimate the model. The simulations of both artificial time series and actual data
are given to show the efficiency of the proposed approach.
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1. INTRODUCTION

An exponential autoregressive time series model, which may give a good fitting of many
stochastic processes observed in practical social, economic and engineering systems, was
introduced first by Ozaki and Oda [1]. It has been well known as a useful non-linear
time series model [2] because some non-linear vibration phenomena such as
amplitude-dependent frequency, jump phenomenon and limit cycle occur for this type
of model too [3]. In accordance with the general equation of non-linear random
vibration:

ẍ+ f(ẋ)+ g(x)= h, (1)

the model was originally of a second order autoregressive form by making the coefficients
amplitude-dependent:

xt =(81 + p1 e−gx2
t−1)xt−1 + (82 + p2 e−gx2

t−1)xt−2 + et , (2)

where 81, 82, p1, p2, g are constants, {et , t=1, . . . , N} is a white noise series, and
{xt , t=1, . . . , N} are the observations under study with a zero mean. It has been shown
that this model may exhibit limit cycle behavior under some conditions, as for Van der
Pol’s equation by ignoring white noise input [4].

The above second order model may be readily extended to a general order model. Thus,
a pth order exponential autoregressive model is given as

xt =(81 + p1 e−gx2
t−1)xt−1 + · · ·+ (8p + pp e−gx2

t−1)xt− p + et . (3)
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For the above model, Haggan and Ozaki [4] have shown that the necessary conditions of
the existence of a limit cycle are

(1) all the roots of zp −81zp−1 − · · ·−8p =0 lie inside the unit circle.
(2) Some of the roots of zp −(81 + p1)zp−1 − · · ·− (8p + pp )=0 lie outside the unit

circle.

A sufficient condition for the existence of a limit cycle is

(3) (1− sp
i=1 8i)/sp

i=1 pi q 1 or Q0.

However, by comparing with simpler structure and broader usage of the exponential
autoregressive model, its identification, that is, the estimation of the order p and the 2p+1
coefficients {g, (8i , pi , i=1, . . . , p)}, is difficult because of the non-linear coefficient g in
the exponential terms of the model. Practical estimation of an exponential autoregressive
model is a non-linear optimization problem with the objective function:

J(u)= s2
e =

1
N− p

s
N

t= p+1 0xt − s
p

i=1

(8i + pi e−gx2
t−1)xt− i1

2

, (4)

where

u=(81, . . . , 8p , p1, . . . ,pp , g)

Unfortunately, it can be proved that this objective function for the non-linear coefficient
g is not convex, so even optimal methods such as non-linear programming are unavailable
for obtaining the global optimal values of the coefficients. As an approximate method,
Haggan and Ozaki [4] have given the following estimating procedure.

(1) First fix the g value that may be determined by some preliminary experiments, then,
81, p1, 82, p2, . . . , 8p , pp are estimated by standard least square regression analysis of xt

on xt−1, xt−1 e−gx2
t−1, . . . , while the order p is selected by minimizing AIC (Akaike

information criterion) [5, 6].
(2) The above analysis is repeated by using a range of g values, and the AIC criterion

is used to select the most suitable value of g. The values of g selected are such that e−gx2
t−1

does not equal 0 or 1 for most values of xt−1.

In fact, the above approach to find the ‘‘best’’ model is only a procedure by trial
and error. If there is no a priori knowledge of the data under study, a large number
of experiments have to be carried out although the final model may still be a local
optimum.

In this paper, a novel approach for estimating the exponential autoregressive model is
provided by using the genetic algorithm (GA) [7–9], which is a class of global optimization
procedure distinguished from other optimization techniques by using concepts from
population genetics to guide the search. In this approach, the estimation of the non-linear
coefficient g of the exponential autoregressive model is regarded as an optimization
problem to which the genetic algorithm is applied, while the other linear coefficients of
the model is estimated by the recursive least squares (RLS) method. Moreover, the order
p is also selected by minimizing the AIC value.

The remainder of this paper is the description of estimating the exponential
autoregressive model by using the genetic algorithm hybridized with the recursive least
squares method, and its simulations of artificial and actual data.
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2. ESTIMATION PROCEDURE

2.1.    

The simple genetic algorithm (SGA) works with a set of strings, namely the population,
while each string, namely the chromosome (or individual), represents a possible solution
to the particular optimization problem. In the simple GA, each chromosome of the
population will be a binary string of length L that corresponds to the problem encoding
described in the next subsection. Generally, the population of the first generation is
randomly assigned, each individual in the population is then evaluated and assigned a
fitness. The population then evolves from generation to generation through the application
of natural genetic operators: reproduction, crossover, and mutation.

Reproduction: Reproduction is based on the principle of survival of the fittest. In such
a case, a fitness function f(i), (i=1, . . . , M) that represents the fitness of the ith
chromosome in the current generation must be assigned to each individual in a generation
where high values mean good fitting. In this operation, the chromosomes will be selected
to survive, and replace the eliminated ones based on the normalized fitness F(i)= f(i)/f�,
where f� is the average fitness of the chromosomes in the current generation:

f�=1/M sM
i=1 f(i)

and M is the number of the chromosomes in each generation.
Crossover: In the genetic algorithm, reproduction directs only the search toward the best

fitting individuals but does not create any new individuals. So the crossover operation is
introduced to create new individuals. Here the 1-point crossover is considered, in which
two new individuals will be recombined through crossing a pair of strings, namely parents,
with a certain probability pc called crossover rate. The crossover rate controls the frequency
with which the crossover operation is applied. For example, with the following two strings
as parents:

parents 1 0 0 0 0 0 0 0 0 parents 2 1 1 1 1 1 1 1 1

then, two children will be produced in the 1-point crossover operation sited at 4 for
instance,

children 1 0 0 0 0 1 1 1 1 children 2 1 1 1 1 0 0 0 0

Mutation: After the crossover, mutation is introduced to insure against premature
convergence that would perhaps be a locally optimal solution. This operation simply alters
the gene in a chromosome from 1 to 0 or from 0 to 1 with a low probability pm .

After the operations described above have been carried out, the individuals in a new
generation are formed. Figure 1 shows the simple GA’s operations from a generation to
the next one.

2.2.       

Usually there are two main components of the genetic algorithm that are problem
dependent: the problem encoding and the evaluation function. It is necessary to make clear
the problem under study before applying the GA. To estimate the exponential
autoregressive model, one must estimate an optimal order p and a set of parameters
{g, (8i , pi , i=1, . . . , p)}, to minimize the objective function. Obviously the exponential
autoregressive model has only one non-linear coefficient g. Whenever g is determined, the
estimation of this model will be reduced to a linear regression problem that can be easily
solved. Therefore, this paper provides a procedure to mutually identify the exponential
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autoregressive model, in which two steps are carried out alternately for a fixed order p,
one of which is to optimize g values by using the genetic algorithm, and the other is to
estimate linear parameters {8i , pi , i=1, . . . , p} by the recursive least squares method with
the given g values through GA search.

For the problem of encoding the selection of the g values of the exponential
autoregressive model, the unique assumption typically made is that it can be represented
by bit strings. This means that the g value can be encoded and discretized in the range
of discretization corresponding to some power of 2. Therefore the g value represented by
a chromosome with L bits will be selected in the real space of [0, gmax ] with
gmax =(2L −1)/d, where d is used to adjust the size of the searching precision and range
of the g value. For example, for a chromosome with length L=10, let d=102·3, then the
g value will be selected in a range of [0, 10·0] with searching precision 1/102·3. The values
of L and d are determined according to the problem under study.

Besides the coding task, the evaluation function also takes an important role in
developing a good simulation in the genetic algorithm. In this procedure, the AIC criterion
is used to select the optimal model. As is well known, the smaller the AIC value of the
estimated model, the better the model fitting, and the best fitting model may be the one
with the minimum AIC value. In practice, the objective function J(u) given by equation
(4) is employed to be an evaluation function instead of the AIC in estimating the g value,
since the minimization of the AIC is reduced to the minimization of J(u) for the fixed order
p. On the other hand, the genetic algorithm operates on the principle of natural selection,
so each chromosome must be given a fitness that transforms the measure of performance
into an allocation of reproductive opportunities directly, the individuals with higher fitness
will get a greater chance to survive and produce offspring. Therefore, the fitness function
is defined as follows:

f(i)= ŝ2
e (max)− ŝ2

e (i) i=1, 2, . . . , M, (5)

where ŝ2
e (max) is the maximum residual variance or the maximum objective function value

in the current generation, and ŝ2
e (i) is the residual variance of the ith individual (model)

in the current generation. Thus, the above definition ensures the fitness function f(i) is
directed to searching for the optimum g value that is consistent with minimizing the
objective function of model estimation.

2.3.       

Now one is concerned with the achievement of the exponential autoregressive model
estimation by using the hybridization of the genetic algorithm and the recursive least

Figure 1. The simple GA operations from a generation to the next one (mutation is not shown).



     313

squares method. As the above description shows, the optimization of the non-linear
coefficient g by the genetic algorithm is not separable from the estimation of other
coefficients in the model. Practically, it is helpful to view the estimation of a model’s
linear coefficients as a necessary step calculating the fitness of each chromosome in the
genetic algorithm for understanding this self-organizing modelling procedure. By assuming
that the non-linear coefficient of a candidate model decoded from a chromosome in the
process of GA search are g(i) for a fixed order p, then this exponential autoregressive
model can be described by the following linear regression.

xt =ZT(t)u+ et , (6)

where

Z(t)= [xt−1, . . . , xt− p, e−g(i)x2
t−1xt−1, . . . , e−g(i)x2

t−1xt− p ]T

u=[81, . . . , 8p , p1, . . . , pp ]T

For estimating linear form models of this kind, the following least squares method is used:

u
 (t+1)= u
 (t)+K(t+1)o(t+1),

K(t+1)=P(t)Z(t+1)(1+ZT(t+1)P(t)Z(t+1))−1,

P(t+1)=P(t)(1−K(t+1)ZT(t+1)), o(t+1)= xt+1 −ZT(t+1)u
 (t). (7)

With u
 (N) as the final estimated coefficients, the model is measured by the evaluation
function for its fitting performance which is used to guide the further searching direction
of the g value.

In summary, for the estimation of the exponential autoregressive model with a fixed
order p, the proposed procedure consists of the steps:

(1) Initialize all of the tuning parameters of the genetic algorithm: M, L, d, pc , pm and
the maximum generation for evolution G–MAX. Also define the initial values P(0) and
u
 (0) of the recursive least squares method. Encode the initial M chromosomes randomly,
set k=1.

(2) Decode the chromosomes into the non-linear coefficients g(i) of the models. Estimate
each model by the least squares method, calculate the evaluation function ŝ2

e (i), in turn
the fitness and the normalized fitness.

(3) Reproduction and offspring protection: If the fitness of the best chromosome in the
current generation is less than that of the last generation, the best chromosome of the last
generation replaces the worst one in the current generation. Then select the chromosomes
of higher fitness to survive and replace the ones of less fitness.

(4) Crossover: Each two neighboring chromosomes swap the fragments in a random site
determined with the crossover rate pc .

(5) Mutation: Each bit of each chromosome in the current generation mutates with the
mutation rate pm .

(6) k= k+1 if kqG–MAX, then terminate the algorithm, otherwise, go to step (2).
(7) Output all the coefficients and the residual variance of the optimum model of the

fixed order p.

Moreover, this estimating procedure is carried out for models of different order p, and
these optimum models of different orders are checked by their AIC values calculated by
the following definitions [5, 6]:

AIC=(N− p) (ln 2p+1+ln ŝ2
e )+2(2p+1) (8)
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If Nw p, then the simplification of the above equation leads to

AIC=(N− p) ln ŝ2
e +2(2p+1) (9)

Generally, the final model will be the model of the minimum AIC value and
simultaneously shares the main properties of the raw data under study. In this paper, the
limit cycle behavior of the models of different order p is examined by the model’s unforced
response using the first p observations of the series under study as the initial values.
Furthermore, a comparison of the predicted performance of these candidate models is also
used to help select the final model.

3. EXAMPLES

In this section, four examples are presented to illustrate the performance of this new
procedure for exponential autoregressive model estimation. The first two examples
originate in the existing literature [4], which is convenient for the purpose of comparison.
The third example, which is an artificial series generated from a linear autoregressive (AR)
model, is used to show the adaptive estimating ability of this procedure, and the last
example is an application of the exponential autogressive model to predict the fluctuations
in a far-infrared laser. In all these examples the tuning parameters of the genetic algorithm
and the initial values of the recursive least squares method are determined as follows:
M=20, L=10, pc =0·8, pm =0·01, d=102·3, G–MAX=1000, P(0)=105I, u
 (0)=0·0.
Note that a smaller d value such as 10·23 or 1·023 may be selected instead of 102·3,
requiring the estimating procedure to be repeated for a larger search range of g, when the
estimated g value of the optimum model reaches the maximum value gmax of the search
space. The AIC value is calculated using equation (9), except for Example 2 which uses
equation (8).

Example 1: 1000 observations are generated from a second order exponential
autoregressive model that is known to have the limit cycle behavior:

xt =(1·95+0·23 e−x2
t−1)xt−1 − (0·96+0·24 e−x2

t−1)xt−2 + et ,

where {et} is the white noise input with variance 0·001 and mean zero. For this series, 100
replications using the presented procedure for the models of order 1–4 agree with the
results shown in Table 1 (where Y means that the model has a limit cycle and N means
that it has no limit cycle). Obviously the final model is a second order EAR model with
the linear coefficients:

8̂1 =1·949990, 8̂2 =−0·959991, p̂1 =0·229747, p̂2 =−0·239553,

Thus good performance of the procedure has been demonstrated since the estimated model
is very similar to the original model in this simulation of artificial data.

T 1

The comparison of the optimum models of different orders for example 1

p ĝ ŝ2
e AIC Limit cycle

1 162·268 1·824×10−1 −1693·8 N
2 0·997067 2·296×10−6 −12948·5 Y
3 0·997067 2·288×10−6 −12934·7 Y
4 0·987292 2·267×10−6 −12927·0 Y
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T 2

The comparison of the optimum models of different orders for example 2

p ĝ ŝ2
e AIC Limit cycle

1 35·3861 0·1100 77·2734 N
2 1·3490 0·0465 −15·9017 N
3 1·5542 0·0457 −13·4696 N
4 2·1799 0·0442 −12·9219 N
5 1·7009 0·0440 −9·2491 Y
6 1·6813 0·0438 −5·3735 Y
7 2·2483 0·0410 −8·2240 Y
8 2·1896 0·0376 −13·0660 N
9 2·3167 0·0371 −9·9640 N

10 3·3822 0·0361 −8·2612 N
11 3·8905 0·0321 −16·0562 Y
12 0·2542 0·0289 −22·1464 N
13 0·3619 0·0289 −17·2224 N
14 0·3421 0·0289 −12·6625 N

Example 2: The Canadian lynx data is a well-known time series that has been studied
with much interest. It consists of 114 observations describing the annual number of lynx
trapped in the Mackenzie river district of Canada over the years 1821 to 1934 (given in
[2]). The data is non-linear and its main feature is the strong cyclical behavior. Therefore
models fitting to this data are expected to have limit cycles similar to the change of the
data. For the logarithmically transformed data, Haggan & Ozaki [4] considered it as a van
der Pol type perturbed limit cycle process, and fitted it by an exponential autoregressive
model of eleventh order. Applying the proposed approach, the authors also obtained
identical results using 100 replications (see Table 2), where the AIC values are calculated
according to equation (8) because the lynx data is a small sample time series. In Table 2,
the models of order 12 and 13 have no limit cycle behavior, so they are not suitable as
the fitting model of the lynx data although they are of smaller AIC values. The reason
may be due to the fact that there is a probability of overfitting a small sample in using
the AIC criterion. Therefore the final model is obviously the 11th order exponential
autoregressive model with ĝ=3·8965, and the linear coefficients shown in Table 3, which
agree well with the results of Haggan & Ozaki [4]. Moreover, this final model also satisfies
the conditions for existence of a limit cycle, and its unforced response is shown in Figure 2.
It can be seen from Figure 2 that the period of the limit cycle is about 9·5 years which
is very similar to that of the lynx data. The comparison of the lynx data and the simulation
data using the final model given in Figure 3 also shows that the model fits the lynx data
well. The estimated residual variance is 0·032, which is the same as that given by Haggan
& Ozaki [4], and also compares favorably with the values found by Campbell and Walker
[10], Tong [11] and Tong and Lim [12], 0·039, 0·044 and 0·036, respectively.

T 3

The linear coefficients of the final model of the lynx data

i 1 2 3 4 5 6 7 8 9 10 11

8x i 1·092 −0·277 0·265 −0·442 0·405 −0·356 0·214 −0·097 0·225 0·065 −0·380
p̂i 0·015 −0·487 −0·061 0·290 −0·531 0·599 −0·532 0·302 −0·182 0·180 0·158
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Figure 2. The unforced response of the final model of the lynx data.

Figure 3. The comparison of the logarithmically transformed data (thick line) and the model’s fitting value
(thin line).

Example 3: As is well known, the exponential autoregressive model is an extension of
the AR model. Whenever the non-linear coefficient g becomes zero, the EAR model is
reduced to a linear AR model. Through taking account of this point, the authors think
that an adaptive estimating algorithm for the exponential autoregressive model must be
available for both non-linear and linear time series. That is, the non-linear coefficient g

may be estimated to be zero automatically if the data under study is linear, in this case,
the final model will be an AR model of the coefficients {8i + pi}. To check the ability of
the proposed procedure, a series of 1000 data from the following arbitrary second order
AR model is generated:

xt =1·1xt−1 −0·8xt−2 + et

where {et} is the white noise with mean zero and variance 0·01. Consequently, 100
replications of the data by the present modelling procedure produce identical results as

T 4

The comparison of the optimum models of different orders for example 3.

p ĝ ŝ2
c AIC Limit cycle

1 961·877 3·1342×10−4 −8053·89 N
2 0·000000 1·0527×10−4 −9130·62 N
3 62·4633 1·0526×10−4 −9117·62 N
4 59·9218 1·0512×10−4 −9105·78 N
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Figure 4. A record of the fluctuations in a far-infrared laser.

shown in Table 4, where the final model is obviously second order with the following
estimated coefficients:

ĝ=0·000000, 8̂1 =0·557373, 8x 2 =−0·407774, p̂1 =0.557373, p̂2 =−0·407774.

This final model is confirmed as a second order AR model by its similarity to the original
model:

xt =1·114746xt−1 −0·815548xt−2 + ot ,

where {ot} is the residual with the variance 0·000105.
Example 4: By the estimating procedure presented, an exponential autoregressive model

has been applied to predict the fluctuations in a far-infrared laser as depicted in Figure 4
(The data are available on WWW at: http://www.cs.colorado.edu/0addreas/Time-Series/
SantaFe, in files A.dat(the first 1000 points) and A.cont(contains continuation for file
A.dat; the first 1000 points of the continuation is used for the prediction test)). This series
of 2000 points is obviously changing in a cyclical way similar to non-linear random
vibration, so it may be appropriate to use the exponential autoregressive model to fit and
in turn predict the series. In this experiment, the modelling procedure presented was
applied to estimate the optimum model of the first 1000 data of the series, and then the
trained model of the first 1000 points was used to predict one-step-ahead the remaining

T 5

The comparison of the optimum models of different orders for example 4

p ĝ ŝ2
e AIC Limit cycle predicting error variance

1 21·016618 1574·71 7360·46 N 163203·20
2 22·580645 866·14 6760·52 N 42525·37
3 0·009775 781·83 6655·65 Y 860·78
4 0·009775 522·22 6251·05 Y 564·19
5 0·009775 462·45 6127·85 Y 517·28
6 0·009775 455·10 6109·80 Y 508·07
7 0·009775 374·47 5914·04 Y 449·07
8 0·009775 352·86 5853·13 Y 424·00
9 0·009775 347·90 5837·24 Y 421·92

10 0·009775 337·88 5806·45 Y 416·68
11 0·009775 335·31 5797·09 Y 413·03
12 0·009775 328·89 5776·18 Y 406·26
13 0·009775 324·37 5760·73 Y 403·57
14 0·009775 315·02 5730·10 Y 385·92
15 0·009775 309·65 5711·40 Y 396·42
16 0·009775 299·55 5677·05 N 811·29
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Figure 5. The unforced response of the final model of the series of the fluctuations in a far-infrared laser.

Figure 6. The simulating data (the first 1000 points) and the predicting data (the second 1000 points) of the
final model of the fluctuations in a far-infrared laser.

1000 points. Consequently, the optimum models of different orders estimated by the
present approach for the first 1000 data (mean x̄=59·89 eliminated), and their predicting
error variances for the remaining 1000 data, are obtained and shown in Table 5. On the
balance of the AIC value, predicting error variance and the non-linear behavior such as
limit cycle, the 14th order EAR model of the coefficients given in Table 6 is selected as
the final model because of its minimum predicting error variance. The unforced response
of the final model is shown in Figure 5, the simulating data (t=1, . . . , 1000) and the
one-step-ahead prediction data (t=1001, . . . , 2000) of the model are shown in Figure 6,
which are very similar to the original data although there are some negative simulating
and predicting values in some points of small values that can be modified to zero in
practical application.

4. DISCUSSION

The possibility of searching not only for the non-linear coefficient g but also the
exponential autoregressive model order p simultaneously by using the genetic algorithm
has been discussed.

At first, for the problem of encoding the selecting of g and p of the exponential
autoregressive model simultaneously, one assumes that g and p are represented successively
from left to right by the total L bits genes of a chromosome, where the g value is
represented by the first L1 bits, and p is described by the next L2 bits, with L=L1 +L2.
According to this kind of encoding, order p will be searched in the integer space of [0, pmax ]
with pmax =2L2 −1, and g will be selected in the real space of [0, gmax ] with gmax defined as
gmax =(2L1 −1)/d. Hence there is no problem in coding when using the genetic algorithm.

On the other hand, by using the AIC criterion as the evaluation function, the fitness
function can be defined as:

f(i)=AIC(max)−AIC(i), i=1, . . . , M, (10)
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Figure 7. The minimum AIC value in each generation for an arbitrary estimation. (a) Example 1; (b) example
3.

where

AIC(i)= (N− p(i))(ln 2p+1+ln ŝ2
e (i))+2(2p(i)+1), ŝ2

e (i)=
1

N− p(i)
s
N

t= p(i)+1

ê2
t (i).

(11)

AIC(max) is the maximum AIC value in the current generation of M individuals, p(i), êt(i)
and ŝ2

e (i) are the order, residual of time t and residual variance of the ith individual (model)
in the current generation, respectively.

With the above definition, the procedure presented of the genetic algorithm hybridized
with the recursive least squares method may also be used to search for the ‘‘optimum’’
model of the minimum AIC value. With the same tuning parameter of the genetic
algorithm and initial values of the recursive least squares method as those in the third
section, except for L=14, L1 =10, and L2 =4, 100 replications for the data of Example
1 and Example 3 were carried out, and the procedure searched optimum models identical
to their final models selected in the third section of this paper. Figure 7(a) and Figure 7(b)
show the minimum AIC value in each generation for an arbitrary experiment of Example
1 and Example 3, respectively, for proving the convergence of the proposal. Thus, the
possibility of estimating g and p of the exponential autoregressive model in
self-organization by the genetic algorithm is verified. However, sometimes the ‘‘optimum’’
model of minimum AIC value may not be always the best fitting model especially in
non-linear time series modelling. It has been argued by Tong [13] that in determining the
final choice of model one need not adhere strictly to the values of the ‘‘structural
parameters’’ selected by the AIC criterion, rather the AIC criterion is used as guide to select
a relatively small subclass of plausible models that may then be examined for certain
special properties (such as limit cycle behavior). This can be also seen from the results of
numerical examples 2 and 4. It is indeed a fact that there is no criterion available for
correctly selecting the final time series model, although the AIC criterion has been very
widely accepted for model order selection. Therefore, to estimate the exponential
autoregressive model in complete self-organization by using the genetic algorithm, it may
be necessary to add some other check of the candidate model properties besides the
performance measurement in terms of AIC criterion. This makes the problem more
complex, and will be discussed in other presentations.

5. CONCLUSION

A novel method used for optimal estimation of the exponential autoregressive model
has been presented. In this approach, the non-linear coefficient g of the model was searched
by using the simple genetic algorithm. Consequently, the estimation of the other
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coefficients is reduced to a linear regression problem, and is achieved by the recursive least
squares method. Compared with trial and error [4] procedure the present approach is
self-organizing and globally optimizing with greater accuracy and less calculation.

This approach is simple in principle, but the results are exciting, which can be seen from
the examples. It is easy to use and it is not difficult to write an automatic modelling
procedure. Moreover, the computational consumption of the procedure depends largely
on the computational complexity of the recursive least squares solution and approximately
7(2p)2 ×N×M×G–MAX arithmetic operations are needed for one estimation of the
model of order p. However, it is possible to introduce more efficient methods instead of
the least squares to estimate the linear coefficients of the model, which may further save
CPU time and improve the performance of the approach presented for various non-linear
time series.
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